The Logic Behind Opt-Outs
Opt-outs are complicated to understand. On a basic level, an opt-out allows a player the choice, during a specified offseason, to nullify his current contract and become a free agent again. How an opt-out affects the value of a contract has been written about plenty — despite the differences in methods or dollar-per-WAR values, it is generally accepted that the inclusion of an opt-out lowers the total salary of the contract.
Given the issues with trying to calculate an exact value of an opt-out — the two biggest challenges being having sparse contract data and the necessity of a reliable future projection system — I tried to explore opt-outs from a theoretical perspective: why would a player ask for an opt-out, and why would a team write one into a contract. Note: the equations were originally in latex, but they lost formatting through submission. They have been replaced with plain text.
From the Player’s Perspective:
A player would sign a contract with an opt-out if he believed the expected present value of the contract was greater than a contract offer without an opt-out.
EPV_opt < EPV_no-opt
The expected present value of the contract without an opt-out (EPV_no-opt) is just the expected present value of the contract itself. The expected present value of the contract with an opt-out (EPV_opt) is more complex.
The expected present value of a contract with an opt-out can be broken down into two components: the expected present value of the pre-opt-out portion of the contract ($latex EPV_{pre\:opt}$) and the expected present value of the post-opt-out portion. Regardless of whether the player opts out or not, the pre-opt-out value of the contract is the same. The post-opt-out value differs, depending on three values: the value of the new contract should the player opt-out ($latex EPV_{opt}$), the value of staying in the current contract and not opting out ($latex EPV_{no\:opt}$), and the probability the player opts out (P opt-out). Read the rest of this entry »