Author Archive

Challenging WAR and Other Statistics as Era-Adjustment Tools

This article is a casual version of my paper “Challenging Nostalgia and Performance Metrics in Baseball” published in Chance which showed, among other things, that wins above replacement (WAR) and the wide class of “versus your peers” statistics are incapable of accurately comparing players across eras. In particular, it was shown that WAR exhibits a very strong bias toward baseball players who played in earlier seasons. A collection of resources and an interactive web app within this framework can be viewed here.

How We Came To This Conclusion

In our research, we split baseball data into time periods and show that WAR includes players from the older era in its all-time rankings. Specifically, the older time period is defined by players who started their career in 1950 or before, and the newer group is defined by players who started their career after 1950. The split date of 1950 corresponds to the US Census that is closest to the integration of baseball in 1947. Prior to 1947, Major League Baseball was a largely all-white segregated sports league, but it slowly but surely integrated in America and the has steadily risen in popularity abroad. All the while, the world populations continue to grow as time progresses. Simply put, there are far more people in the baseball-eligible talent pool post-1950 than before.

We find that roughly 20% of the “realistic historic talent pool” belongs to the pre-1950 group. By “realistic historic talent pool” we mean the cumulative population of men ages 20-29 collected every 10 years arising from baseball playing countries (men ages 20-29 serve as a proxy for a concept of talent pool that is otherwise not well-defined). Before 1950, this population is basically just white American men. After 1950, this population includes all American men, as well as men from a plethora of baseball-playing countries. Read the rest of this entry »

SEAM Methodology for Player Matchup Evaluations

Introducing SEAM Methodology

This article introduces the SEAM (Synthetic Estimated Average Matchup) method for describing batter-versus-pitcher matchups, both numerically and visually. We provide a Shiny app, available here, which you can use to follow along.

This app allows users to visualize synthetic spray chart distributions for any batter-pitcher matchup that has or could have occurred in the past five years (which is when Statcast data exists). Our app also reports performance metrics that are calculated directly from the displayed synthetic spray chart distribution. This includes the expected number of singles, doubles, triples, and home runs, as well as the expected batting average on balls in play (xBABIP) and the expected bases on contact (xBsCON), which can be thought of as slugging percentage except the denominator is BIP + HR instead of AB. These matchup-dependent metrics allow for any user to assess the expected performance of batters and pitchers when they face each other.

The SEAM method estimates spray chart distributions in the form of heat maps that are smoothed versions of conventional spray charts. We construct these by combining separate batter spray chart distributions that are constructed for each of the pitches that the pitcher throws. The final combination is also weighted to the usage for each pitch.

One challenge to this approach is the sparsity of some batter-pitcher matchup data. We alleviate this concern with the development of synthetic batters and pitchers with similar characteristics as the batter and pitcher under study. Our synthetic player creation methodology is inspired by the notion of similarity scores like those motivating PECOTA and Bill James’s work. However, unlike the similarity scores presented in the past, we construct similarity scores using a nearest neighbor approach that is based on the underlying batter and pitcher characteristics of the players under study instead of observed statistics. Read the rest of this entry »