Defense Is Cheap — and It Wins

One of the most common phrases in all of sports is “defense wins championships.” Defense isn’t flashy; it doesn’t put people in the seats (unless you’re a desperate Twins fan wanting to see Byron Buxton do more of this — or this). People like to see the home runs, the strikeouts. People also like to see the diving plays, but diving plays are a poor indicator of a team’s total defensive quality. So even the plays on defense that do put people in the seats aren’t indicative of a team’s overall level of defense. Other sports are the same way. People don’t realize the ins and outs of NBA defenses; they only see the steals and the lockdown plays — or lack thereof. NFL fans love to see big hits, but sometimes these big hits could be avoided if a team had defended the play better and stopped the ball carrier earlier.

Yes, it is true the nuances of defense can be monotonous, and this is true through all sports. Another factor about defense is the lack of a way to quantify defensive skill. Some metrics, like RPM (shameless plug to my boy Ricky Rubio, clearly a top-5 PG), try to do this for basketball. But in baseball, defense really is quantifiable, using different metrics that track can track how effective a defensive player or team is against league average. For example, read up on UZR, just one of the metrics that can put a number on a defense.

I came to this thinking on the undervaluation of defense through a different path. I had always wondered if an incredible defense could bail out an average pitching staff. I had always been interested in this facet; to reminisce, I once created an outfield of Torii Hunter, Rocco Baldelli, and Carl Crawford on MVP Baseball 2004. These were the best and fastest fielders in the game, and it seemed like they could get any fly ball. As much as I want to credit EA Sports for making an accurate game, I obviously cannot deduce the real-world effectiveness from a video game. Instead, I turned to the numbers.

To quantify how much a defense could “bail out” their pitching staff, I looked at the team’s average ERA compared to its average FIP. The difference between these numbers can somewhat quantify how much a team’s defense (and other factors) influence pitching from what we would expect it to be. For example, if a team had a FIP of 4.00, and an ERA of 3.50, this would indicate that a good defense was able to reach more balls than an average defense, meaning the team’s ERA should be lower, as there were more recorded outs than what we expect. The opposite, a team’s ERA being greater than its FIP, would indicate that a poor defense hurt their pitching staff’s performance, as they should have been able to get more balls that they did. To sum up, my hypothesis was that the teams with the largest FIP-ERA differences had great defenses, while teams that had the lowest FIP-ERA differences (negative values), had poor defenses. Now, I understand that many factors outside of defense can influence ERA, and that FIP does not perfectly match what a pitcher’s ERA would be with an average defense, but these anomalies will be canceled out in a large enough data set.

For the data, I measured playoff-contending teams (at least 85 wins) since 2002 (the furthest back I could get a value for a defensive rating) through 2015. From these teams, I parsed values for ERA, FIP, and defense, as well as the team’s payroll, runs scored, runs allowed, and run differential.

While taking my initial walks through the data, I saw two types of teams on this list. There were teams that scored few runs, but allowed even fewer, and there were teams that scored a host of runs, although they conceded a large, but lesser amount. The teams that scored little and allowed less had a common trend: they had great defenses and ERAs generally lower than FIPs. On the other hand, the teams that blasted the seams off the ball and had no problems putting runs on the scoreboard tended to have poor defenses, and their FIP-ERA difference was negative.

Using this data, I decided to run a regression analysis between a team’s defense and this FIP-ERA difference. There was a solid relationship between these two variables, with an r-squared of 0.48. This indicates that the difference between a team’s FIP-ERA difference tends to increase as the skill level of their defense increases.


Now we know correlation does not imply causation, but this relationship indicates the strength within this relationship. The better a team’s defense is, the more likely their defense will be able to positively influence their pitching staff’s performance. These were teams like the 2002 Atlanta Braves, the 2011 Tampa Bay Rays, or the 2004 and 2005 St. Louis Cardinals. These teams didn’t have great offenses, but they had great defenses, they had good team ERAs, and they prevented teams from scoring runs.

On the other hand, there were teams like the 2003 and 2004 Red Sox as well as the Mid-2000s Yankees. These teams were those with massive payrolls that paid a premium for a punishing lineup. These lineups, however, lacked defensive talent, causing their pitching staffs to underperform their expected performances, as their teams’ ERAs were higher than FIPs.

So how related is this FIP-ERA difference to the amount of runs allowed? Well, pretty strong, with an r-squared of 0.46. Again, a strong relationship, this time negative, indicating that as a team’s FIP-ERA increases, the runs that team allows decrease.


To reinforce this relationship, I looked at defense and runs allowed. Again, this relationship showed a good, not great relationship, with an r-squared at 0.28.


From these relationships, we can deduce that as a team’s defense rises in skill, the runs they allow tend to decrease and their team FIP-ERA difference tends to increase. Similarly, as a team’s FIP-ERA increases, the amount of runs a team allows decreases. From these relationships, we can conclude that these three variables are related.

As a team’s defense increases, they can positively influence the effectiveness of their pitching staff and will decrease their runs allowed. This may seem like common sense, and it probably is.

Now when we look at Bill James’ Pythagorean Win Expectation and other similar formulae, we notice that a team’s expected winning percentage is not dependent on the runs they score, but rather, their run differential. So yes, if you want to, you can construct a team like the Bronx Bombers and spend millions to assemble the some of the best lineups of recent history. If you’ll do that, you’ll hit score a host of runs, and with decent pitching and decent fielding (or below-average defense and good pitching — like those mid-2000s Yankees teams), you’ll be able to outscore your opponents and have a high run differential.

Or, you can assemble a team that will limit the amount of runs you’ll give up, by investing in defense. You will be able to compensate for average hitting and pitching, as you will boost your pitching staff’s effectiveness, and you will reduce the need for your offense to put up great numbers. Again, we have seen teams like this. The 2002 Braves were a combination of good defense, great pitching (aided by that defense), and average or perhaps even below-average offense; yet, this team won 101 games by scoring a mediocre 702 runs on the season (the average for the NL was 720 that season, 747 for all of baseball). Similarly, the 2011 Tampa Bay Rays put up 707 runs, against an American League average of 723, and still put up 91 wins and made the playoffs with good pitching and better defense. In fact, FIP would indicate their pitching was expected to perform right at American League average, a 4.08 ERA, yet they posted a 3.58 ERA.

Moreover, in that same season, the Los Angeles Angels won 86 games on just 667 runs, as they had even better pitching than the Rays. FIP would indicate the Angels’ pitching would be around a 3.94 ERA with league-average defense, but it was at a 3.57 ERA. The impact of good pitching paired with defense clearly is high, and I can’t think of one better, final example than the 2010 World Series-winning San Francisco Giants, who couldn’t have reiterated this structure any better: great pitching, great defense, and below-average offense.

So when one is trying to construct a team, and, unlike with the Yankees or Red Sox, money is a constraint, one might want to consider investing in defense. I say this because I looked directly at the relationship of a team’s payroll and their defensive ability, and it actually produced a negative relationship.


I know this data may be influenced by the fact that salaries have increased essentially every year in the span between 2002-2015, but if this truly did influence the graph, it would show either two things. Teams recently may have lessened their focus on defense and spent on hitting and pitching (explaining why defense-oriented teams had smaller payrolls); or, even with the rising caps, teams have still been able to assemble winning rosters by focusing on defense. Whether it is the first condition or the second, or perhaps a combination of both, perhaps defense is undervalued in today’s MLB. I doubt I’m the first to figure this one out, but the Cubs have far and away the best defense in baseball. Also, the Red Sox and Indians have stellar gloves as well, forming a solid second-tier level of defense that has put them in playoff position. So maybe Jason Heyward’s contract shouldn’t look so bad after all.

You don’t have to score a ton of runs to be a playoff baseball team. You just have to score more than the other team does, which can be done through limiting the amount of runs they score. It may seem like common sense, but common sense eludes us all at times.

There are many ways to construct a baseball team, and this might be just one more. And for stingy owners, it wouldn’t break the bank.

We hoped you liked reading Defense Is Cheap — and It Wins by anelso13!

Please support FanGraphs by becoming a member. We publish thousands of articles a year, host multiple podcasts, and have an ever growing database of baseball stats.

FanGraphs does not have a paywall. With your membership, we can continue to offer the content you've come to rely on and add to our unique baseball coverage.

Support FanGraphs

newest oldest most voted

An outfield of three 2016 Jason Heyward’s would be a disaster. I know that the numbers say such an OF would be league average more or less, but you would still lose more games because you would get almost nothing from 3 spots in the batting order. —– The cubs have been stellar defensively for sure, but they also have the 3rd best wRC+ in baseball. Their success this season is because of their all-around game, not just defense. —– I do agree though that cheap defense is totally worth it. If you expect to only get marginal offensive production… Read more »


“Cheap defense” is unproven defense, which rarely is reliable going forward.


Disagree, good fielders usually also mean good baserunners, and as pointed help a staff. So it’s just the batting portion of offense they suffer. I’ll take 3 ender inciartes in my OF though. Just league average hitting, but cheap and do everything else.


“Quantifiable” and predictable are very different. You’re assuming two things: 1) A player’s future defensive skill is predictable at the time he is signed/traded for. 2) There is a reasonably strong relationship between defense and salary. No one has shown that predicting defensive value is anywhere near as easy as predicting offensive value. And what is the r^2 in your Salary vs. Def plot? Looks pretty close to zero to me. Finally, younger players are both cheaper and better at defense, on average. So if younger teams start winning more due to non-defense-related reasons, a simple correlation btw def. and… Read more »