“Pitchers Never Bat Strategy” Now Worth Seven Wins Per Year

The case for never letting pitchers bat in the NL has just gotten a whole lot better. I now estimate that if a NL team were to always pinch-hit for their pitchers they would expect to pick up a whopping 7.2 wins per year. And that, my friends, is a game-changer.

In my initial post two weeks ago I laid out a strategy in which a National League manager pinch-hits for his pitchers every time their turns come up in the batting order. I called it the “Pitchers Never Bat” strategy. The manager would keep a pitching staff of 11 “relievers” and no “starters.” The major benefit of doing this, I estimated, would be an improvement in the team’s offense.

I addressed what I considered the two major “components” of the analysis and estimated that the impact of this strategy was worth an extra 3.6 wins per year if the team was the only team in the National League to implement it. I also identified four other components of the analysis that could possibly add to, or take away from, my initial estimate of 3.6 wins per year.

In this follow-up post I will do two things. First, I will make some improvements by estimating the impact of two of the four components that I previously left unaddressed. And second, I will address some concerns raised by some members of the FanGraphs community via their thoughtful comments on my initial post.

Here is where I left off at the end of my original post:

Estimated Change in Wins Per Year by Component –

Component #1:   +3.6

Change in Runs due to pinch hitters batting for all pitchers

 

Component #2:   +0.0

Change in Runs Allowed due to using pitching staff in a new way

 

Component #3: Not Evaluated

Change in Runs Allowed due to added flexibility in selecting pitchers based on how they are warming up prior to or during a game

 

Component #4: Not evaluated

Change in Runs Allowed due to opponents’ inability to “stack the lineup” to take advantage of the starting pitchers “handedness” (i.e., lefty or righty)

 

Component #5: Not evaluated

Change due to reducing size of pitching staff by 1-2 men

 

Component #6: Not evaluated

Change in Runs Allowed due to the “times through the order” effect

 

TOTAL:                +3.6 Wins per Year

 

IMPROVEMENTS

So now, let’s make some improvements to the prior analysis. Here, I’m going to add estimates for the impacts of Components #4 and #6:

Component #4 – Handedness

In my “Pitchers Never Bat” strategy, the starting pitcher leaves the game when his turn in the batting order comes up, as a pinch-hitter takes his place. In this approach the starting pitcher will typically throw 1-3 innings, averaging two innings per start. Compare this to the conventional starting pitcher who will throw six innings, on average. If the opposing manager were to “stack” (or “tilt”) his batting order to have more lefties (LHB) to face a righty starting pitcher (RHB), or more RHB to face a LHP, as they do now, the value of his tilt would only be in effect for two innings, not six. The manager of the team using the “Pitchers Never Bat” strategy would most likely bring in the next two relievers with the opposite hand of his starter. Example: A lefty starter goes two innings, and is replaced by two consecutive right-handed relievers who would pitch two innings each.

After reviewing league averages for wOBAs for each of the four “handedness combinations” (i.e., LHP/LHB, LHP/RHB, RHP/LHB, and PHP/RHB) as well as how much managers “tilt” their line-ups to take advantage of the starting pitcher’s hand, I estimate that the opponent would lose his current handedness advantage for, on average, four PAs per game, with each of these PAs reducing his batters’ expected wOBA by 18 points for these PAs. Over 162 games, that amounts to 648 PAs per year. Using the rule of thumb that a decrease of 20 wOBA points decreases team run production by 10 runs per every 600 PAs, I estimate that the opponents will lose 9.8 runs/year (that is 18/20 * 10 * 648/600). And since every 10 runs is worth a win, on average, that’s a positive impact to the team implementing the “Pitchers Never Bat” strategy of about 1.0 wins/year (= 9.8/10).

But, since opponents will quickly catch on to the new strategy that they are facing, they should immediately stop trying to “stack” or “tilt” their line-ups. If the opposing manager puts up a line-up that is set up with absolutely no regard to lefty or righty pitching, he can reduce the negative impact to his offense by about 25%, down to a loss of 7.3 runs/year, or a loss of 0.7 wins/year. Since I assume that the opponents will take this less damaging approach, I will use +0.7 wins/year as a conservative estimate for Component #4.

Component #6 – Times Through the Order

Times Through the Order (TTO) refers to differences in pitcher performance due to how many times pitchers have faced the opposing lineup. I recently read an excellent piece on this topic by Mitchel Lichtman, published on Baseball Prospectus on 11/5/13, entitled “Everything You Always Wanted to Know About the Times Through the Order Penalty.” I will draw on one of his many key findings to estimate the impact of TTO on the “Pitchers Never Bat” strategy.

Lichtman presents data (drawn from 2000-2012) which shows that starting pitchers are, on average, at their best the first time through the line-up, are worse the second time through, and even worse the third time through. Using “wOBA against” statistics (adjusted appropriately for batter quality), he shows that pitchers suffer a decay of about 10 points in wOBA against when going from the first TTO to the second TTO, and then decay another 10 points when going from the second TTO to the third TTO. He also estimated the wOBA against statistic for the second TTO is equal to the pitchers’ overall wOBA against. So, in other words, starting pitchers are about 10 points better than average for the first TTO, about average for the second TTO, and about 10 points worse than average for the third TTO.

In the “Pitchers Never Bat” strategy, starters will occasionally work into the beginning of the second TTO, so I’ll assume that 80% of the batters they face will be in the starter’s first TTO, and 20% will be in the second TTO. This means that their wOBA against should be about eight points better (=10 points * 80%) than they would see if they were used in the conventional six-plus inning approach. This advantage will be repeated again by the relievers who replace the starter and pitch through the sixth inning, or until the time that the starter would typically be pulled when using a conventional pitching staff. Think of it this way – instead of a starter throwing a wOBA against of .320 for the first six innings, you get a starter plus two relievers each throwing a wOBA against of .312 for the first six innings. And this benefit is strictly due to the TTO effect.

Improving your wOBA against statistic by eight points for the first six innings of every game means that these pitchers will face about 4,374 batters per year (= 27 PA per game X 162 games.)  Again, using the rule of thumb of 20 woBA points equates to 10 runs per 600 PA, I estimate the impact of this improvement to be a decrease in Runs Allowed of 29.2 runs per year (=8/20 * 10 * 4,374/600.) And using the rule of thumb that 10 runs per year equates to one additional win per year, I can finally estimate that the positive impact of the TTO effect to be 2.9 additional wins per year (=29.2/10).

Now, let’s revisit where we stand with our six components:

Estimated Change in Wins Per Year by Component –

Component #1:   +3.6

Change in Runs due to pinch hitters batting for all pitchers

 

Component #2:   +0.0

Change in Runs Allowed due to using pitching staff in a new way

 

Component #3: Not Evaluated

Change in Runs Allowed due to added flexibility in selecting pitchers based on how they are warming up prior to or during a game

 

Component #4:   +0.7

Change in Runs Allowed due to opponents’ inability to “stack the lineup” to take advantage of the starting pitchers “handedness” (i.e., lefty or righty)

 

Component #5: Not evaluated

Change due to reducing size of pitching staff by 1-2 men

 

Component #6:   +2.9

Change in Runs Allowed due to the “times through the order” effect

 

TOTAL:                 +7.2 Wins per Year

 

CONCERNS FROM COMMENTERS

Commenters to my original post raised no objections with my estimated value of +3.6 wins per year due to Component #1, which is the expected change in runs due to pinch-hitters batting for all pitchers. Their two primary concerns were regarding Component #2, which is the change in runs allowed due to using the pitching staff in a new way. Commenters were concerned that my proposed staff of 11 pitchers, averaging 130 innings pitched (IP) per year each, would not be able to handle that large a workload, and therefore the pitchers’ performances would be worse than they would be as part of a traditional pitching staff.

On the issue of workload I see it as follows: Say half of the new staff comes from current relievers who are used to throwing 50-80 IP per year. The new strategy would ask them to average 100-130 IP per year. And let’s say that the other half of the new staff comes from current starters who are used to throwing 160-200 IP per year. The new strategy would ask them to throw 130-160 IP year. So, yes, one would expect that the old relievers would probably pitch worse if they were asked to throw an extra 50 IP per year. But, by similar logic, the old starters would be expected to pitch better if they were asked to reduce their workload by 30 or 40 IP per year. Do these two effects offset each other? Does one dominate the other? I don’t know. Even if Component #2 resulted in a negative net effect, how big could it be? Could it be large enough to outweigh the +7.2 wins estimated from Components #1, #4, and #6? I don’t think so.

And what if, instead, the GM hired 11 guys for the staff that were all starters previously? Would that lead to a net gain to the staff’s performance due to reduced workloads per person? Potentially. Also, note that the impact we are talking about here is solely due to workload and has nothing to do with Handedness (Component #4) or Times Through the Order (Component #6).

For those still concerned that an average of 130 IP for each of 11 pitchers is still a big negative, here are three ways to reduce the average workload:

First, due to call-ups from the minors, visits to the DL, and expanded rosters in September, team workloads are actually shared by far more than the current 12-13 pitchers on the roster at any one point in time. In 2016 the median number of pitchers used by NL teams was 27. If you ranked each team’s staffs at year-end by IP, and then added up the IP thrown by their top 12, you’d find the top 12 typically account for about 80% of their team’s total IP. So you could safely reduce my 130 IP per person that I required for the “Pitchers Never Bat” strategy by 10% to adjust for that. That brings the average workload required down to 117 IP (= 130 * 90%).

Second, some commenters suggested I keep a 12-man staff, not 11 as I proposed. Doing this would decrease the average workload per pitcher by another 8%, or about 9 IP. That would bring down the average workload from 117 IP to 108 IP. (Of course, this would require that the number of position players be reduced by one, and there would be some negative impact because of that.)

Third, as I mentioned in my first post, a team could keep an ace starter that is allowed to bat for himself. He would be used exactly as an ace is used now, pitching 6+ innings every fifth day. In this variation, the “Pitchers Never Bat” strategy would only be used on the four days that the ace is resting. So, here the ace would pitch about 180 innings, reducing the workload for each of the other pitchers by another six innings per year, bringing their average workload down to about 102 IP. (By the way, I roughly estimate that the ace would need to have an expected WHIP of 1.05 or lower to justify allowing him to bat. At a WHIP of 1.05, the added benefit of letting him pitch 6+ innings would just offset the benefits from Components #1, 2, 4, and 6.)

So, to recap, with all three of these changes incorporated, the staff would consist of an ace throwing 180 IP, plus 11 others averaging about 102 IP, and another 15 or so pitchers that come and go throughout the season to support the 12 “primary” guys by sucking up the remaining 20% of the entire team’s IP. This should alleviate the concerns about pitcher workload.

I’m still not totally comfortable quantifying the impact of Component #2 yet, but I’m going to go out on a limb and say that if the staff was developed from 11 guys who were previously starters throwing 180 IP, the smaller workload should improve their average performance. My hunch is that the impact might be slightly positive, whereas the commenters thought it was negative. At this point I’m still going to leave the impact of Component #2 at 0.0, or no change, pending further evaluation.

 

CONCLUSION

By adding estimates for the impacts of “Handedness” (Component #4) and “Times Through the Order” (Component #6) my total estimated value of the “Pitchers Never Bat” strategy has jumped dramatically from +3.6 wins (in my initial post) to +7.2 wins per year. If this were to hold up, this would be an astounding gain to any NL team that implemented the strategy. At the going rate of $8 million per year that teams currently pay per win, this equates to about $58 million per year. I look forward to hearing your comments regarding this analysis.

Oh, and by the way, if any NL team would like to discuss additional analysis and/or implementation of this strategy please feel free to contact me at howardsrubin@gmail.com.





12 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Chill
7 years ago

Wouldn’t you run out of pinch hitters? If the lineup cycles through 4 times you’ve burned 12 hitters in the game. The original 8 in the field and the four pinch hitters for the pitchers. If you’re carrying 12 pitchers that leaves you with just one bat left on the bench. Woe unto the team who employs regulars that need platoon partners. Or who need defensive replacements. Or who get injured.
This idea is entertaining but entirely impractical. There’s a much simpler solution to the problem of pitchers not being able to hit. It’s called a DH. After nearly 50 years in use, it’s pretty clear that it works. The NL should get with the program or reconcile themselves to watching pitchers flail away 2-3 times a game. In the interim, these forays into foolishness are just a waste of “ink”.

Shirtless George Brett
7 years ago
Reply to  Chill

I tend to agree. This seems very interesting on paper but I don’t see how you could actually implement it in a practical manner for a few reasons that seem like they have already been brought up.

The biggest issue for me though is that barring some very abnormal luck it seems like injuries alone would decimate a team that tried this strategy. You are now relying on twice a many pitchers then you were before. instead of 5 guys doing the bulk of the work you now need 11 guys to constantly share it all and pitchers are generally the least reliable, health wise, people on the field. I’m no medical professional but it seem like an easier task to keep 5-6 people healthy all year than 11. And since this strategy hinges on having enough pitchers to share the workload at a manageable level what happens when 2 or 3 of your pitchers inevitably go down to injury? In fact most likely you are going to always have at least a couple pitchers on the DL at any given time if history is any indication.

This strategy seems like it would exponentially magnify what is already a huge problem for teams. Keeping pitchers healthy.

Dee P. Gordon
7 years ago

And whatever you do, if one of your pitchers gets injured, don’t just split the innings across the rest of the staff. Especially after the first 8 or 9 have gone on the DL.

AJSKENSTON
7 years ago

Amazing article!

kseg22
7 years ago

But then how could we watch Bartolo hit?

Mike Ozgamember
7 years ago

Also, you have to take into account if a “starting” pitcher’s value batting with 2 out and the bases empty in the 3rd inning is worth taking him out vs him pitching 2-3 more innings, especially with some pitchers being somewhat capable of hitting such as Bumgarner, Arrieta, and possibly Shohei Otani in a year or two. I find this idea very intriguing, but there are still too many unknown possible outcomes. If a manager tried this, it’s either the new moneyball, or he’ll never find a job in pro baseball again. Either way, I look forward to doing more research on this idea. Great couple of articles!

Piazza Subs
7 years ago
Reply to  Mike Ozga

Have you done anymore research on this topic? Because if you have you would be able to see the flaws in this. Just stating the obvious possibilities without going into any further details is a waste of a comment. You sound like a guy who would also hate Derek Jeter just because.

evo34
7 years ago

So dumb, and so emblematic of the 22-year-old blogger “why don’t GMs simply do this” mentality. This strat has been proposed and evaluated a million times. The author would know this if he had done 10 minutes of google searching.

He has no clue what the penalty is for having someone pitch 2 innings every 2-3 days, the inability to bury your bad pitchers in low leverage situations, the finite supply of fielders, etc. So many words from someone so naive.

evo34
7 years ago

“Let’s look at the National League’s pitchers for 2015. Starting pitchers had an aggregate WHIP (Walks Plus Hits per Inning Pitched) of 1.299, while relievers, in total, recorded an identical WHIP of 1.299. So my takeaway from this is that the average starter was equally as good (or bad) as the average reliever.”

You should stopped right after making this fatally flawed assumption. Pitching for one inning (properly rested) is much easier than pitching for six innings. So if you force all of those relievers to pitch longer and more often, they will:

a) pitch much less effectively
b) get hurt a lot more

By the end of the year, you’ll be left with a staff of minor league scrubs begging you to release them in order to preserve their long-term health.

Sean Huff
7 years ago

This is brilliant. I would be very interested to see which managers implement this strategy the best. It would change my MoY views.

Antonio Bananas
7 years ago

I think the lower quality of reliever would be more damage than the offensive gain. Then again, with cheaper relievers, you could put together a monster roster of 12 or so hitters. However, baseball has a rhythm. You’d have several guys getting 1 AB/game. I’m not sure how they’d perform.

I thought of a hybrid of this and the current system. You have 2 “closer” types and a third guy who’s almost as good.

First 1-2 innings are the “closer” reliever. By then you’re down to the bottom of the other team’s line up.

This is when you put your traditional starter in. The benefit here is that he will only see the meat of the other team’s lineup 2 times (in theory).

The other benefit is the pinch hitter in the 2nd/3rd inning. With the goal to jump out to an early lead by leveraging the closer (now as a starter) to get through the heart of the opposing team’s order. Starter has a breezy first inning against the bottom of the order. Then goes through the lineup 2 times.

For the rest of the game you mix and match lefty/righty.

The “rotation” would be CloserA/CloserB/CloserA/CloserB/CloserC
“CloserC” would be used also in late relief but with his “start” in mind.

You’d have 4 starting pitchers, 5 usual relievers, and 1 swing man.

The pinch hit in the 2nd/3rd could also be a double switch to better match up your lineup.

Baltar
7 years ago

Thanks so much for this outstanding follow up. I hope you will analyze the remaining factors.