Computer Vision and Pitch Framing
Quantifying catcher framing was a huge step for the analytical community in trying to understand the position more fully. It has allowed evaluators to have more accurate numbers on what a catcher is adding to the team. It has seemingly also brought more organizational focus to framing at the expense of blocking across the league, as can be seen in the increased prevalence of catching from a knee.
Perhaps all this work will be moot if robo-umpires are ever implemented, but teams clearly see marginal advantages to be gained by research and development on this topic for now. With this in mind, the quantification of a catcher’s ability to frame is only the first step in the journey. Next we should be looking to find what makes a catcher good or bad at framing in order to improve player development practices. Finding this from a statistical perspective is tricky, as we don’t really have easily accessible data on what the catcher is doing behind the plate other than the video of it happening. This may not be the case on the team side as markerless motion capture is a developing technology in this space which can record more data, but publicly, we just have video. Instead of sitting down and trying to watch thousands of pitches like surely many coaches have done, I’ll try my hand with OpenCV and Tensorflow. Read the rest of this entry »